Рассчитать высоту треугольника со сторонами 136, 89 и 51

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 89 + 51}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-136)(138-89)(138-51)}}{89}\normalsize = 24.375425}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-136)(138-89)(138-51)}}{136}\normalsize = 15.9515649}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-136)(138-89)(138-51)}}{51}\normalsize = 42.5375063}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 89 и 51 равна 24.375425
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 89 и 51 равна 15.9515649
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 89 и 51 равна 42.5375063
Ссылка на результат
?n1=136&n2=89&n3=51