Рассчитать высоту треугольника со сторонами 137, 104 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 104 + 54}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-137)(147.5-104)(147.5-54)}}{104}\normalsize = 48.2656045}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-137)(147.5-104)(147.5-54)}}{137}\normalsize = 36.639583}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-137)(147.5-104)(147.5-54)}}{54}\normalsize = 92.9559791}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 104 и 54 равна 48.2656045
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 104 и 54 равна 36.639583
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 104 и 54 равна 92.9559791
Ссылка на результат
?n1=137&n2=104&n3=54
Найти высоту треугольника со сторонами 44, 40 и 16
Найти высоту треугольника со сторонами 118, 99 и 51
Найти высоту треугольника со сторонами 125, 116 и 56
Найти высоту треугольника со сторонами 134, 104 и 69
Найти высоту треугольника со сторонами 53, 50 и 12
Найти высоту треугольника со сторонами 143, 120 и 113
Найти высоту треугольника со сторонами 118, 99 и 51
Найти высоту треугольника со сторонами 125, 116 и 56
Найти высоту треугольника со сторонами 134, 104 и 69
Найти высоту треугольника со сторонами 53, 50 и 12
Найти высоту треугольника со сторонами 143, 120 и 113