Рассчитать высоту треугольника со сторонами 137, 106 и 101
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 106 + 101}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-137)(172-106)(172-101)}}{106}\normalsize = 100.212874}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-137)(172-106)(172-101)}}{137}\normalsize = 77.5369683}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-137)(172-106)(172-101)}}{101}\normalsize = 105.173908}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 106 и 101 равна 100.212874
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 106 и 101 равна 77.5369683
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 106 и 101 равна 105.173908
Ссылка на результат
?n1=137&n2=106&n3=101
Найти высоту треугольника со сторонами 150, 126 и 35
Найти высоту треугольника со сторонами 47, 32 и 21
Найти высоту треугольника со сторонами 129, 117 и 81
Найти высоту треугольника со сторонами 116, 81 и 52
Найти высоту треугольника со сторонами 137, 92 и 61
Найти высоту треугольника со сторонами 69, 58 и 24
Найти высоту треугольника со сторонами 47, 32 и 21
Найти высоту треугольника со сторонами 129, 117 и 81
Найти высоту треугольника со сторонами 116, 81 и 52
Найти высоту треугольника со сторонами 137, 92 и 61
Найти высоту треугольника со сторонами 69, 58 и 24