Рассчитать высоту треугольника со сторонами 137, 108 и 94
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 108 + 94}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-137)(169.5-108)(169.5-94)}}{108}\normalsize = 93.6577684}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-137)(169.5-108)(169.5-94)}}{137}\normalsize = 73.8324014}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-137)(169.5-108)(169.5-94)}}{94}\normalsize = 107.606798}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 108 и 94 равна 93.6577684
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 108 и 94 равна 73.8324014
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 108 и 94 равна 107.606798
Ссылка на результат
?n1=137&n2=108&n3=94
Найти высоту треугольника со сторонами 116, 104 и 48
Найти высоту треугольника со сторонами 111, 77 и 38
Найти высоту треугольника со сторонами 139, 109 и 45
Найти высоту треугольника со сторонами 130, 85 и 49
Найти высоту треугольника со сторонами 134, 103 и 89
Найти высоту треугольника со сторонами 89, 77 и 42
Найти высоту треугольника со сторонами 111, 77 и 38
Найти высоту треугольника со сторонами 139, 109 и 45
Найти высоту треугольника со сторонами 130, 85 и 49
Найти высоту треугольника со сторонами 134, 103 и 89
Найти высоту треугольника со сторонами 89, 77 и 42