Рассчитать высоту треугольника со сторонами 137, 109 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 109 + 37}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-137)(141.5-109)(141.5-37)}}{109}\normalsize = 26.9828488}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-137)(141.5-109)(141.5-37)}}{137}\normalsize = 21.468106}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-137)(141.5-109)(141.5-37)}}{37}\normalsize = 79.4900141}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 109 и 37 равна 26.9828488
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 109 и 37 равна 21.468106
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 109 и 37 равна 79.4900141
Ссылка на результат
?n1=137&n2=109&n3=37
Найти высоту треугольника со сторонами 149, 133 и 114
Найти высоту треугольника со сторонами 135, 118 и 90
Найти высоту треугольника со сторонами 144, 142 и 99
Найти высоту треугольника со сторонами 109, 101 и 34
Найти высоту треугольника со сторонами 52, 46 и 41
Найти высоту треугольника со сторонами 99, 90 и 65
Найти высоту треугольника со сторонами 135, 118 и 90
Найти высоту треугольника со сторонами 144, 142 и 99
Найти высоту треугольника со сторонами 109, 101 и 34
Найти высоту треугольника со сторонами 52, 46 и 41
Найти высоту треугольника со сторонами 99, 90 и 65