Рассчитать высоту треугольника со сторонами 137, 115 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 115 + 109}{2}} \normalsize = 180.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180.5(180.5-137)(180.5-115)(180.5-109)}}{115}\normalsize = 105.460313}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180.5(180.5-137)(180.5-115)(180.5-109)}}{137}\normalsize = 88.5250806}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180.5(180.5-137)(180.5-115)(180.5-109)}}{109}\normalsize = 111.265468}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 115 и 109 равна 105.460313
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 115 и 109 равна 88.5250806
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 115 и 109 равна 111.265468
Ссылка на результат
?n1=137&n2=115&n3=109
Найти высоту треугольника со сторонами 150, 128 и 54
Найти высоту треугольника со сторонами 56, 55 и 41
Найти высоту треугольника со сторонами 131, 111 и 57
Найти высоту треугольника со сторонами 149, 141 и 137
Найти высоту треугольника со сторонами 122, 122 и 85
Найти высоту треугольника со сторонами 135, 103 и 103
Найти высоту треугольника со сторонами 56, 55 и 41
Найти высоту треугольника со сторонами 131, 111 и 57
Найти высоту треугольника со сторонами 149, 141 и 137
Найти высоту треугольника со сторонами 122, 122 и 85
Найти высоту треугольника со сторонами 135, 103 и 103