Рассчитать высоту треугольника со сторонами 137, 115 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 115 + 86}{2}} \normalsize = 169}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169(169-137)(169-115)(169-86)}}{115}\normalsize = 85.622208}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169(169-137)(169-115)(169-86)}}{137}\normalsize = 71.8726563}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169(169-137)(169-115)(169-86)}}{86}\normalsize = 114.494813}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 115 и 86 равна 85.622208
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 115 и 86 равна 71.8726563
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 115 и 86 равна 114.494813
Ссылка на результат
?n1=137&n2=115&n3=86
Найти высоту треугольника со сторонами 105, 78 и 32
Найти высоту треугольника со сторонами 117, 111 и 50
Найти высоту треугольника со сторонами 101, 59 и 53
Найти высоту треугольника со сторонами 139, 102 и 76
Найти высоту треугольника со сторонами 108, 87 и 25
Найти высоту треугольника со сторонами 79, 63 и 20
Найти высоту треугольника со сторонами 117, 111 и 50
Найти высоту треугольника со сторонами 101, 59 и 53
Найти высоту треугольника со сторонами 139, 102 и 76
Найти высоту треугольника со сторонами 108, 87 и 25
Найти высоту треугольника со сторонами 79, 63 и 20