Рассчитать высоту треугольника со сторонами 137, 123 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 123 + 40}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-137)(150-123)(150-40)}}{123}\normalsize = 39.1309521}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-137)(150-123)(150-40)}}{137}\normalsize = 35.1321686}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-137)(150-123)(150-40)}}{40}\normalsize = 120.327678}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 123 и 40 равна 39.1309521
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 123 и 40 равна 35.1321686
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 123 и 40 равна 120.327678
Ссылка на результат
?n1=137&n2=123&n3=40
Найти высоту треугольника со сторонами 108, 103 и 93
Найти высоту треугольника со сторонами 58, 53 и 31
Найти высоту треугольника со сторонами 117, 69 и 49
Найти высоту треугольника со сторонами 104, 103 и 11
Найти высоту треугольника со сторонами 108, 108 и 63
Найти высоту треугольника со сторонами 104, 91 и 91
Найти высоту треугольника со сторонами 58, 53 и 31
Найти высоту треугольника со сторонами 117, 69 и 49
Найти высоту треугольника со сторонами 104, 103 и 11
Найти высоту треугольника со сторонами 108, 108 и 63
Найти высоту треугольника со сторонами 104, 91 и 91