Рассчитать высоту треугольника со сторонами 137, 125 и 86

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 125 + 86}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-137)(174-125)(174-86)}}{125}\normalsize = 84.3014112}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-137)(174-125)(174-86)}}{137}\normalsize = 76.917346}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-137)(174-125)(174-86)}}{86}\normalsize = 122.531121}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 125 и 86 равна 84.3014112
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 125 и 86 равна 76.917346
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 125 и 86 равна 122.531121
Ссылка на результат
?n1=137&n2=125&n3=86