Рассчитать высоту треугольника со сторонами 137, 125 и 97
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 125 + 97}{2}} \normalsize = 179.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{179.5(179.5-137)(179.5-125)(179.5-97)}}{125}\normalsize = 93.7069709}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{179.5(179.5-137)(179.5-125)(179.5-97)}}{137}\normalsize = 85.4990611}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{179.5(179.5-137)(179.5-125)(179.5-97)}}{97}\normalsize = 120.756406}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 125 и 97 равна 93.7069709
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 125 и 97 равна 85.4990611
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 125 и 97 равна 120.756406
Ссылка на результат
?n1=137&n2=125&n3=97
Найти высоту треугольника со сторонами 99, 94 и 58
Найти высоту треугольника со сторонами 76, 76 и 24
Найти высоту треугольника со сторонами 59, 54 и 46
Найти высоту треугольника со сторонами 70, 60 и 13
Найти высоту треугольника со сторонами 147, 142 и 94
Найти высоту треугольника со сторонами 136, 108 и 44
Найти высоту треугольника со сторонами 76, 76 и 24
Найти высоту треугольника со сторонами 59, 54 и 46
Найти высоту треугольника со сторонами 70, 60 и 13
Найти высоту треугольника со сторонами 147, 142 и 94
Найти высоту треугольника со сторонами 136, 108 и 44