Рассчитать высоту треугольника со сторонами 137, 127 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 127 + 35}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-137)(149.5-127)(149.5-35)}}{127}\normalsize = 34.5538052}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-137)(149.5-127)(149.5-35)}}{137}\normalsize = 32.0316296}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-137)(149.5-127)(149.5-35)}}{35}\normalsize = 125.38095}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 127 и 35 равна 34.5538052
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 127 и 35 равна 32.0316296
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 127 и 35 равна 125.38095
Ссылка на результат
?n1=137&n2=127&n3=35
Найти высоту треугольника со сторонами 122, 115 и 48
Найти высоту треугольника со сторонами 79, 74 и 28
Найти высоту треугольника со сторонами 140, 135 и 133
Найти высоту треугольника со сторонами 130, 95 и 47
Найти высоту треугольника со сторонами 96, 84 и 62
Найти высоту треугольника со сторонами 106, 100 и 92
Найти высоту треугольника со сторонами 79, 74 и 28
Найти высоту треугольника со сторонами 140, 135 и 133
Найти высоту треугольника со сторонами 130, 95 и 47
Найти высоту треугольника со сторонами 96, 84 и 62
Найти высоту треугольника со сторонами 106, 100 и 92