Рассчитать высоту треугольника со сторонами 137, 127 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 127 + 62}{2}} \normalsize = 163}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163(163-137)(163-127)(163-62)}}{127}\normalsize = 61.8185321}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163(163-137)(163-127)(163-62)}}{137}\normalsize = 57.3062305}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163(163-137)(163-127)(163-62)}}{62}\normalsize = 126.628283}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 127 и 62 равна 61.8185321
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 127 и 62 равна 57.3062305
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 127 и 62 равна 126.628283
Ссылка на результат
?n1=137&n2=127&n3=62