Рассчитать высоту треугольника со сторонами 137, 128 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 128 + 36}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-137)(150.5-128)(150.5-36)}}{128}\normalsize = 35.7477871}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-137)(150.5-128)(150.5-36)}}{137}\normalsize = 33.3993923}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-137)(150.5-128)(150.5-36)}}{36}\normalsize = 127.103243}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 128 и 36 равна 35.7477871
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 128 и 36 равна 33.3993923
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 128 и 36 равна 127.103243
Ссылка на результат
?n1=137&n2=128&n3=36
Найти высоту треугольника со сторонами 95, 93 и 26
Найти высоту треугольника со сторонами 124, 102 и 57
Найти высоту треугольника со сторонами 76, 55 и 32
Найти высоту треугольника со сторонами 86, 76 и 31
Найти высоту треугольника со сторонами 28, 26 и 6
Найти высоту треугольника со сторонами 85, 71 и 22
Найти высоту треугольника со сторонами 124, 102 и 57
Найти высоту треугольника со сторонами 76, 55 и 32
Найти высоту треугольника со сторонами 86, 76 и 31
Найти высоту треугольника со сторонами 28, 26 и 6
Найти высоту треугольника со сторонами 85, 71 и 22