Рассчитать высоту треугольника со сторонами 137, 130 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 130 + 48}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-137)(157.5-130)(157.5-48)}}{130}\normalsize = 47.9708329}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-137)(157.5-130)(157.5-48)}}{137}\normalsize = 45.5197685}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-137)(157.5-130)(157.5-48)}}{48}\normalsize = 129.921006}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 130 и 48 равна 47.9708329
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 130 и 48 равна 45.5197685
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 130 и 48 равна 129.921006
Ссылка на результат
?n1=137&n2=130&n3=48
Найти высоту треугольника со сторонами 84, 56 и 33
Найти высоту треугольника со сторонами 47, 45 и 34
Найти высоту треугольника со сторонами 104, 95 и 75
Найти высоту треугольника со сторонами 121, 117 и 79
Найти высоту треугольника со сторонами 47, 35 и 21
Найти высоту треугольника со сторонами 86, 48 и 41
Найти высоту треугольника со сторонами 47, 45 и 34
Найти высоту треугольника со сторонами 104, 95 и 75
Найти высоту треугольника со сторонами 121, 117 и 79
Найти высоту треугольника со сторонами 47, 35 и 21
Найти высоту треугольника со сторонами 86, 48 и 41