Рассчитать высоту треугольника со сторонами 137, 133 и 116
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 133 + 116}{2}} \normalsize = 193}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{193(193-137)(193-133)(193-116)}}{133}\normalsize = 106.260538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{193(193-137)(193-133)(193-116)}}{137}\normalsize = 103.158041}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{193(193-137)(193-133)(193-116)}}{116}\normalsize = 121.833203}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 133 и 116 равна 106.260538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 133 и 116 равна 103.158041
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 133 и 116 равна 121.833203
Ссылка на результат
?n1=137&n2=133&n3=116
Найти высоту треугольника со сторонами 98, 80 и 27
Найти высоту треугольника со сторонами 98, 94 и 29
Найти высоту треугольника со сторонами 105, 105 и 1
Найти высоту треугольника со сторонами 97, 92 и 42
Найти высоту треугольника со сторонами 126, 107 и 81
Найти высоту треугольника со сторонами 77, 65 и 55
Найти высоту треугольника со сторонами 98, 94 и 29
Найти высоту треугольника со сторонами 105, 105 и 1
Найти высоту треугольника со сторонами 97, 92 и 42
Найти высоту треугольника со сторонами 126, 107 и 81
Найти высоту треугольника со сторонами 77, 65 и 55