Рассчитать высоту треугольника со сторонами 137, 134 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 134 + 54}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-137)(162.5-134)(162.5-54)}}{134}\normalsize = 53.4268131}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-137)(162.5-134)(162.5-54)}}{137}\normalsize = 52.2568829}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-137)(162.5-134)(162.5-54)}}{54}\normalsize = 132.577647}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 134 и 54 равна 53.4268131
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 134 и 54 равна 52.2568829
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 134 и 54 равна 132.577647
Ссылка на результат
?n1=137&n2=134&n3=54
Найти высоту треугольника со сторонами 92, 69 и 26
Найти высоту треугольника со сторонами 112, 109 и 67
Найти высоту треугольника со сторонами 58, 43 и 42
Найти высоту треугольника со сторонами 78, 53 и 32
Найти высоту треугольника со сторонами 104, 94 и 89
Найти высоту треугольника со сторонами 133, 116 и 62
Найти высоту треугольника со сторонами 112, 109 и 67
Найти высоту треугольника со сторонами 58, 43 и 42
Найти высоту треугольника со сторонами 78, 53 и 32
Найти высоту треугольника со сторонами 104, 94 и 89
Найти высоту треугольника со сторонами 133, 116 и 62