Рассчитать высоту треугольника со сторонами 137, 135 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 135 + 112}{2}} \normalsize = 192}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192(192-137)(192-135)(192-112)}}{135}\normalsize = 102.804141}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192(192-137)(192-135)(192-112)}}{137}\normalsize = 101.30335}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192(192-137)(192-135)(192-112)}}{112}\normalsize = 123.915705}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 135 и 112 равна 102.804141
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 135 и 112 равна 101.30335
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 135 и 112 равна 123.915705
Ссылка на результат
?n1=137&n2=135&n3=112
Найти высоту треугольника со сторонами 120, 85 и 85
Найти высоту треугольника со сторонами 63, 56 и 50
Найти высоту треугольника со сторонами 108, 82 и 42
Найти высоту треугольника со сторонами 150, 124 и 89
Найти высоту треугольника со сторонами 143, 137 и 48
Найти высоту треугольника со сторонами 93, 89 и 27
Найти высоту треугольника со сторонами 63, 56 и 50
Найти высоту треугольника со сторонами 108, 82 и 42
Найти высоту треугольника со сторонами 150, 124 и 89
Найти высоту треугольника со сторонами 143, 137 и 48
Найти высоту треугольника со сторонами 93, 89 и 27