Рассчитать высоту треугольника со сторонами 137, 135 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 135 + 47}{2}} \normalsize = 159.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159.5(159.5-137)(159.5-135)(159.5-47)}}{135}\normalsize = 46.5936929}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159.5(159.5-137)(159.5-135)(159.5-47)}}{137}\normalsize = 45.913493}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159.5(159.5-137)(159.5-135)(159.5-47)}}{47}\normalsize = 133.832948}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 135 и 47 равна 46.5936929
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 135 и 47 равна 45.913493
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 135 и 47 равна 133.832948
Ссылка на результат
?n1=137&n2=135&n3=47
Найти высоту треугольника со сторонами 132, 108 и 99
Найти высоту треугольника со сторонами 126, 93 и 92
Найти высоту треугольника со сторонами 86, 50 и 48
Найти высоту треугольника со сторонами 92, 90 и 77
Найти высоту треугольника со сторонами 138, 128 и 35
Найти высоту треугольника со сторонами 100, 93 и 78
Найти высоту треугольника со сторонами 126, 93 и 92
Найти высоту треугольника со сторонами 86, 50 и 48
Найти высоту треугольника со сторонами 92, 90 и 77
Найти высоту треугольника со сторонами 138, 128 и 35
Найти высоту треугольника со сторонами 100, 93 и 78