Рассчитать высоту треугольника со сторонами 137, 136 и 74

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=137+136+742=173.5\color{#0000FF}{p = \Large{\frac{137 + 136 + 74}{2}} \normalsize = 173.5}
hb=2173.5(173.5137)(173.5136)(173.574)136=71.4849196\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-137)(173.5-136)(173.5-74)}}{136}\normalsize = 71.4849196}
ha=2173.5(173.5137)(173.5136)(173.574)137=70.9631319\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-137)(173.5-136)(173.5-74)}}{137}\normalsize = 70.9631319}
hc=2173.5(173.5137)(173.5136)(173.574)74=131.37769\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-137)(173.5-136)(173.5-74)}}{74}\normalsize = 131.37769}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 136 и 74 равна 71.4849196
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 136 и 74 равна 70.9631319
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 136 и 74 равна 131.37769
Ссылка на результат
?n1=137&n2=136&n3=74