Рассчитать высоту треугольника со сторонами 137, 86 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 86 + 58}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-137)(140.5-86)(140.5-58)}}{86}\normalsize = 34.5803157}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-137)(140.5-86)(140.5-58)}}{137}\normalsize = 21.7073515}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-137)(140.5-86)(140.5-58)}}{58}\normalsize = 51.2742612}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 86 и 58 равна 34.5803157
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 86 и 58 равна 21.7073515
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 86 и 58 равна 51.2742612
Ссылка на результат
?n1=137&n2=86&n3=58
Найти высоту треугольника со сторонами 124, 121 и 40
Найти высоту треугольника со сторонами 137, 110 и 50
Найти высоту треугольника со сторонами 130, 113 и 91
Найти высоту треугольника со сторонами 114, 82 и 42
Найти высоту треугольника со сторонами 98, 82 и 64
Найти высоту треугольника со сторонами 138, 105 и 85
Найти высоту треугольника со сторонами 137, 110 и 50
Найти высоту треугольника со сторонами 130, 113 и 91
Найти высоту треугольника со сторонами 114, 82 и 42
Найти высоту треугольника со сторонами 98, 82 и 64
Найти высоту треугольника со сторонами 138, 105 и 85