Рассчитать высоту треугольника со сторонами 137, 87 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 87 + 60}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-137)(142-87)(142-60)}}{87}\normalsize = 41.1365805}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-137)(142-87)(142-60)}}{137}\normalsize = 26.12323}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-137)(142-87)(142-60)}}{60}\normalsize = 59.6480418}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 87 и 60 равна 41.1365805
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 87 и 60 равна 26.12323
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 87 и 60 равна 59.6480418
Ссылка на результат
?n1=137&n2=87&n3=60
Найти высоту треугольника со сторонами 141, 125 и 118
Найти высоту треугольника со сторонами 136, 114 и 45
Найти высоту треугольника со сторонами 94, 94 и 90
Найти высоту треугольника со сторонами 146, 132 и 97
Найти высоту треугольника со сторонами 102, 93 и 68
Найти высоту треугольника со сторонами 138, 126 и 90
Найти высоту треугольника со сторонами 136, 114 и 45
Найти высоту треугольника со сторонами 94, 94 и 90
Найти высоту треугольника со сторонами 146, 132 и 97
Найти высоту треугольника со сторонами 102, 93 и 68
Найти высоту треугольника со сторонами 138, 126 и 90