Рассчитать высоту треугольника со сторонами 137, 89 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 89 + 56}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-137)(141-89)(141-56)}}{89}\normalsize = 35.4805771}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-137)(141-89)(141-56)}}{137}\normalsize = 23.049426}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-137)(141-89)(141-56)}}{56}\normalsize = 56.3887744}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 89 и 56 равна 35.4805771
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 89 и 56 равна 23.049426
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 89 и 56 равна 56.3887744
Ссылка на результат
?n1=137&n2=89&n3=56
Найти высоту треугольника со сторонами 128, 92 и 50
Найти высоту треугольника со сторонами 147, 144 и 90
Найти высоту треугольника со сторонами 148, 134 и 128
Найти высоту треугольника со сторонами 129, 112 и 90
Найти высоту треугольника со сторонами 86, 66 и 62
Найти высоту треугольника со сторонами 42, 40 и 6
Найти высоту треугольника со сторонами 147, 144 и 90
Найти высоту треугольника со сторонами 148, 134 и 128
Найти высоту треугольника со сторонами 129, 112 и 90
Найти высоту треугольника со сторонами 86, 66 и 62
Найти высоту треугольника со сторонами 42, 40 и 6