Рассчитать высоту треугольника со сторонами 138, 102 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 102 + 66}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-138)(153-102)(153-66)}}{102}\normalsize = 62.5699608}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-138)(153-102)(153-66)}}{138}\normalsize = 46.2473624}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-138)(153-102)(153-66)}}{66}\normalsize = 96.6990304}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 102 и 66 равна 62.5699608
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 102 и 66 равна 46.2473624
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 102 и 66 равна 96.6990304
Ссылка на результат
?n1=138&n2=102&n3=66
Найти высоту треугольника со сторонами 79, 64 и 34
Найти высоту треугольника со сторонами 150, 144 и 121
Найти высоту треугольника со сторонами 149, 108 и 51
Найти высоту треугольника со сторонами 132, 96 и 65
Найти высоту треугольника со сторонами 114, 92 и 47
Найти высоту треугольника со сторонами 137, 135 и 30
Найти высоту треугольника со сторонами 150, 144 и 121
Найти высоту треугольника со сторонами 149, 108 и 51
Найти высоту треугольника со сторонами 132, 96 и 65
Найти высоту треугольника со сторонами 114, 92 и 47
Найти высоту треугольника со сторонами 137, 135 и 30