Рассчитать высоту треугольника со сторонами 138, 111 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 111 + 74}{2}} \normalsize = 161.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161.5(161.5-138)(161.5-111)(161.5-74)}}{111}\normalsize = 73.7865028}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161.5(161.5-138)(161.5-111)(161.5-74)}}{138}\normalsize = 59.3500131}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161.5(161.5-138)(161.5-111)(161.5-74)}}{74}\normalsize = 110.679754}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 111 и 74 равна 73.7865028
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 111 и 74 равна 59.3500131
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 111 и 74 равна 110.679754
Ссылка на результат
?n1=138&n2=111&n3=74
Найти высоту треугольника со сторонами 85, 80 и 71
Найти высоту треугольника со сторонами 125, 115 и 104
Найти высоту треугольника со сторонами 100, 72 и 68
Найти высоту треугольника со сторонами 138, 100 и 58
Найти высоту треугольника со сторонами 54, 53 и 52
Найти высоту треугольника со сторонами 119, 75 и 55
Найти высоту треугольника со сторонами 125, 115 и 104
Найти высоту треугольника со сторонами 100, 72 и 68
Найти высоту треугольника со сторонами 138, 100 и 58
Найти высоту треугольника со сторонами 54, 53 и 52
Найти высоту треугольника со сторонами 119, 75 и 55