Рассчитать высоту треугольника со сторонами 138, 113 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 113 + 38}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-138)(144.5-113)(144.5-38)}}{113}\normalsize = 31.4175442}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-138)(144.5-113)(144.5-38)}}{138}\normalsize = 25.7259601}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-138)(144.5-113)(144.5-38)}}{38}\normalsize = 93.4258551}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 113 и 38 равна 31.4175442
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 113 и 38 равна 25.7259601
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 113 и 38 равна 93.4258551
Ссылка на результат
?n1=138&n2=113&n3=38
Найти высоту треугольника со сторонами 105, 75 и 52
Найти высоту треугольника со сторонами 101, 68 и 36
Найти высоту треугольника со сторонами 116, 86 и 67
Найти высоту треугольника со сторонами 97, 77 и 27
Найти высоту треугольника со сторонами 111, 110 и 4
Найти высоту треугольника со сторонами 117, 108 и 70
Найти высоту треугольника со сторонами 101, 68 и 36
Найти высоту треугольника со сторонами 116, 86 и 67
Найти высоту треугольника со сторонами 97, 77 и 27
Найти высоту треугольника со сторонами 111, 110 и 4
Найти высоту треугольника со сторонами 117, 108 и 70