Рассчитать высоту треугольника со сторонами 138, 118 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 118 + 71}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-138)(163.5-118)(163.5-71)}}{118}\normalsize = 70.9992109}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-138)(163.5-118)(163.5-71)}}{138}\normalsize = 60.7094702}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-138)(163.5-118)(163.5-71)}}{71}\normalsize = 117.998689}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 118 и 71 равна 70.9992109
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 118 и 71 равна 60.7094702
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 118 и 71 равна 117.998689
Ссылка на результат
?n1=138&n2=118&n3=71
Найти высоту треугольника со сторонами 129, 99 и 89
Найти высоту треугольника со сторонами 128, 76 и 76
Найти высоту треугольника со сторонами 148, 145 и 74
Найти высоту треугольника со сторонами 145, 132 и 15
Найти высоту треугольника со сторонами 137, 129 и 98
Найти высоту треугольника со сторонами 143, 139 и 44
Найти высоту треугольника со сторонами 128, 76 и 76
Найти высоту треугольника со сторонами 148, 145 и 74
Найти высоту треугольника со сторонами 145, 132 и 15
Найти высоту треугольника со сторонами 137, 129 и 98
Найти высоту треугольника со сторонами 143, 139 и 44