Рассчитать высоту треугольника со сторонами 138, 119 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 119 + 63}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-138)(160-119)(160-63)}}{119}\normalsize = 62.882842}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-138)(160-119)(160-63)}}{138}\normalsize = 54.2250594}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-138)(160-119)(160-63)}}{63}\normalsize = 118.778702}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 119 и 63 равна 62.882842
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 119 и 63 равна 54.2250594
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 119 и 63 равна 118.778702
Ссылка на результат
?n1=138&n2=119&n3=63
Найти высоту треугольника со сторонами 88, 70 и 69
Найти высоту треугольника со сторонами 106, 77 и 37
Найти высоту треугольника со сторонами 98, 94 и 8
Найти высоту треугольника со сторонами 84, 67 и 65
Найти высоту треугольника со сторонами 95, 93 и 59
Найти высоту треугольника со сторонами 85, 67 и 27
Найти высоту треугольника со сторонами 106, 77 и 37
Найти высоту треугольника со сторонами 98, 94 и 8
Найти высоту треугольника со сторонами 84, 67 и 65
Найти высоту треугольника со сторонами 95, 93 и 59
Найти высоту треугольника со сторонами 85, 67 и 27