Рассчитать высоту треугольника со сторонами 138, 122 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 122 + 49}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-138)(154.5-122)(154.5-49)}}{122}\normalsize = 48.4667936}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-138)(154.5-122)(154.5-49)}}{138}\normalsize = 42.8474552}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-138)(154.5-122)(154.5-49)}}{49}\normalsize = 120.672425}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 122 и 49 равна 48.4667936
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 122 и 49 равна 42.8474552
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 122 и 49 равна 120.672425
Ссылка на результат
?n1=138&n2=122&n3=49
Найти высоту треугольника со сторонами 103, 91 и 73
Найти высоту треугольника со сторонами 138, 99 и 63
Найти высоту треугольника со сторонами 42, 28 и 17
Найти высоту треугольника со сторонами 77, 64 и 34
Найти высоту треугольника со сторонами 76, 66 и 30
Найти высоту треугольника со сторонами 98, 68 и 36
Найти высоту треугольника со сторонами 138, 99 и 63
Найти высоту треугольника со сторонами 42, 28 и 17
Найти высоту треугольника со сторонами 77, 64 и 34
Найти высоту треугольника со сторонами 76, 66 и 30
Найти высоту треугольника со сторонами 98, 68 и 36