Рассчитать высоту треугольника со сторонами 138, 124 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 124 + 22}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-138)(142-124)(142-22)}}{124}\normalsize = 17.8652605}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-138)(142-124)(142-22)}}{138}\normalsize = 16.0528428}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-138)(142-124)(142-22)}}{22}\normalsize = 100.695105}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 124 и 22 равна 17.8652605
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 124 и 22 равна 16.0528428
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 124 и 22 равна 100.695105
Ссылка на результат
?n1=138&n2=124&n3=22
Найти высоту треугольника со сторонами 121, 81 и 47
Найти высоту треугольника со сторонами 25, 25 и 21
Найти высоту треугольника со сторонами 134, 123 и 60
Найти высоту треугольника со сторонами 142, 142 и 102
Найти высоту треугольника со сторонами 148, 130 и 120
Найти высоту треугольника со сторонами 94, 88 и 10
Найти высоту треугольника со сторонами 25, 25 и 21
Найти высоту треугольника со сторонами 134, 123 и 60
Найти высоту треугольника со сторонами 142, 142 и 102
Найти высоту треугольника со сторонами 148, 130 и 120
Найти высоту треугольника со сторонами 94, 88 и 10