Рассчитать высоту треугольника со сторонами 138, 124 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 124 + 33}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-138)(147.5-124)(147.5-33)}}{124}\normalsize = 31.318633}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-138)(147.5-124)(147.5-33)}}{138}\normalsize = 28.1413804}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-138)(147.5-124)(147.5-33)}}{33}\normalsize = 117.682136}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 124 и 33 равна 31.318633
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 124 и 33 равна 28.1413804
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 124 и 33 равна 117.682136
Ссылка на результат
?n1=138&n2=124&n3=33
Найти высоту треугольника со сторонами 134, 134 и 61
Найти высоту треугольника со сторонами 120, 90 и 73
Найти высоту треугольника со сторонами 25, 23 и 11
Найти высоту треугольника со сторонами 142, 135 и 8
Найти высоту треугольника со сторонами 141, 120 и 115
Найти высоту треугольника со сторонами 124, 124 и 89
Найти высоту треугольника со сторонами 120, 90 и 73
Найти высоту треугольника со сторонами 25, 23 и 11
Найти высоту треугольника со сторонами 142, 135 и 8
Найти высоту треугольника со сторонами 141, 120 и 115
Найти высоту треугольника со сторонами 124, 124 и 89