Рассчитать высоту треугольника со сторонами 138, 124 и 98

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 124 + 98}{2}} \normalsize = 180}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180(180-138)(180-124)(180-98)}}{124}\normalsize = 95.032061}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180(180-138)(180-124)(180-98)}}{138}\normalsize = 85.3911272}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180(180-138)(180-124)(180-98)}}{98}\normalsize = 120.244649}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 124 и 98 равна 95.032061
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 124 и 98 равна 85.3911272
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 124 и 98 равна 120.244649
Ссылка на результат
?n1=138&n2=124&n3=98