Рассчитать высоту треугольника со сторонами 138, 127 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 127 + 20}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-138)(142.5-127)(142.5-20)}}{127}\normalsize = 17.3769622}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-138)(142.5-127)(142.5-20)}}{138}\normalsize = 15.9918421}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-138)(142.5-127)(142.5-20)}}{20}\normalsize = 110.34371}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 127 и 20 равна 17.3769622
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 127 и 20 равна 15.9918421
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 127 и 20 равна 110.34371
Ссылка на результат
?n1=138&n2=127&n3=20
Найти высоту треугольника со сторонами 117, 116 и 34
Найти высоту треугольника со сторонами 66, 65 и 55
Найти высоту треугольника со сторонами 49, 49 и 16
Найти высоту треугольника со сторонами 142, 135 и 121
Найти высоту треугольника со сторонами 106, 90 и 74
Найти высоту треугольника со сторонами 148, 131 и 33
Найти высоту треугольника со сторонами 66, 65 и 55
Найти высоту треугольника со сторонами 49, 49 и 16
Найти высоту треугольника со сторонами 142, 135 и 121
Найти высоту треугольника со сторонами 106, 90 и 74
Найти высоту треугольника со сторонами 148, 131 и 33