Рассчитать высоту треугольника со сторонами 138, 127 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=138+127+402=152.5\color{#0000FF}{p = \Large{\frac{138 + 127 + 40}{2}} \normalsize = 152.5}
hb=2152.5(152.5138)(152.5127)(152.540)127=39.663547\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-127)(152.5-40)}}{127}\normalsize = 39.663547}
ha=2152.5(152.5138)(152.5127)(152.540)138=36.5019599\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-127)(152.5-40)}}{138}\normalsize = 36.5019599}
hc=2152.5(152.5138)(152.5127)(152.540)40=125.931762\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-127)(152.5-40)}}{40}\normalsize = 125.931762}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 127 и 40 равна 39.663547
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 127 и 40 равна 36.5019599
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 127 и 40 равна 125.931762
Ссылка на результат
?n1=138&n2=127&n3=40