Рассчитать высоту треугольника со сторонами 138, 128 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 128 + 40}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-138)(153-128)(153-40)}}{128}\normalsize = 39.7851131}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-138)(153-128)(153-40)}}{138}\normalsize = 36.9021339}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-138)(153-128)(153-40)}}{40}\normalsize = 127.312362}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 128 и 40 равна 39.7851131
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 128 и 40 равна 36.9021339
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 128 и 40 равна 127.312362
Ссылка на результат
?n1=138&n2=128&n3=40
Найти высоту треугольника со сторонами 139, 111 и 53
Найти высоту треугольника со сторонами 125, 111 и 81
Найти высоту треугольника со сторонами 109, 88 и 81
Найти высоту треугольника со сторонами 103, 95 и 45
Найти высоту треугольника со сторонами 135, 82 и 82
Найти высоту треугольника со сторонами 100, 75 и 67
Найти высоту треугольника со сторонами 125, 111 и 81
Найти высоту треугольника со сторонами 109, 88 и 81
Найти высоту треугольника со сторонами 103, 95 и 45
Найти высоту треугольника со сторонами 135, 82 и 82
Найти высоту треугольника со сторонами 100, 75 и 67