Рассчитать высоту треугольника со сторонами 138, 128 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 128 + 44}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-138)(155-128)(155-44)}}{128}\normalsize = 43.9090163}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-138)(155-128)(155-44)}}{138}\normalsize = 40.7272035}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-138)(155-128)(155-44)}}{44}\normalsize = 127.73532}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 128 и 44 равна 43.9090163
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 128 и 44 равна 40.7272035
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 128 и 44 равна 127.73532
Ссылка на результат
?n1=138&n2=128&n3=44
Найти высоту треугольника со сторонами 137, 133 и 37
Найти высоту треугольника со сторонами 108, 76 и 57
Найти высоту треугольника со сторонами 150, 108 и 86
Найти высоту треугольника со сторонами 134, 124 и 37
Найти высоту треугольника со сторонами 105, 84 и 33
Найти высоту треугольника со сторонами 60, 42 и 28
Найти высоту треугольника со сторонами 108, 76 и 57
Найти высоту треугольника со сторонами 150, 108 и 86
Найти высоту треугольника со сторонами 134, 124 и 37
Найти высоту треугольника со сторонами 105, 84 и 33
Найти высоту треугольника со сторонами 60, 42 и 28