Рассчитать высоту треугольника со сторонами 138, 128 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 128 + 73}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-138)(169.5-128)(169.5-73)}}{128}\normalsize = 72.2516649}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-138)(169.5-128)(169.5-73)}}{138}\normalsize = 67.016037}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-138)(169.5-128)(169.5-73)}}{73}\normalsize = 126.687851}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 128 и 73 равна 72.2516649
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 128 и 73 равна 67.016037
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 128 и 73 равна 126.687851
Ссылка на результат
?n1=138&n2=128&n3=73
Найти высоту треугольника со сторонами 96, 54 и 50
Найти высоту треугольника со сторонами 122, 71 и 64
Найти высоту треугольника со сторонами 128, 124 и 110
Найти высоту треугольника со сторонами 117, 109 и 104
Найти высоту треугольника со сторонами 62, 43 и 39
Найти высоту треугольника со сторонами 119, 114 и 18
Найти высоту треугольника со сторонами 122, 71 и 64
Найти высоту треугольника со сторонами 128, 124 и 110
Найти высоту треугольника со сторонами 117, 109 и 104
Найти высоту треугольника со сторонами 62, 43 и 39
Найти высоту треугольника со сторонами 119, 114 и 18