Рассчитать высоту треугольника со сторонами 138, 129 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 129 + 62}{2}} \normalsize = 164.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164.5(164.5-138)(164.5-129)(164.5-62)}}{129}\normalsize = 61.7479129}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164.5(164.5-138)(164.5-129)(164.5-62)}}{138}\normalsize = 57.7208751}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164.5(164.5-138)(164.5-129)(164.5-62)}}{62}\normalsize = 128.475496}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 129 и 62 равна 61.7479129
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 129 и 62 равна 57.7208751
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 129 и 62 равна 128.475496
Ссылка на результат
?n1=138&n2=129&n3=62
Найти высоту треугольника со сторонами 142, 96 и 68
Найти высоту треугольника со сторонами 142, 116 и 81
Найти высоту треугольника со сторонами 81, 49 и 38
Найти высоту треугольника со сторонами 95, 76 и 75
Найти высоту треугольника со сторонами 147, 122 и 84
Найти высоту треугольника со сторонами 114, 85 и 62
Найти высоту треугольника со сторонами 142, 116 и 81
Найти высоту треугольника со сторонами 81, 49 и 38
Найти высоту треугольника со сторонами 95, 76 и 75
Найти высоту треугольника со сторонами 147, 122 и 84
Найти высоту треугольника со сторонами 114, 85 и 62