Рассчитать высоту треугольника со сторонами 138, 130 и 108
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 130 + 108}{2}} \normalsize = 188}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{188(188-138)(188-130)(188-108)}}{130}\normalsize = 101.603709}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{188(188-138)(188-130)(188-108)}}{138}\normalsize = 95.7136386}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{188(188-138)(188-130)(188-108)}}{108}\normalsize = 122.30076}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 130 и 108 равна 101.603709
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 130 и 108 равна 95.7136386
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 130 и 108 равна 122.30076
Ссылка на результат
?n1=138&n2=130&n3=108
Найти высоту треугольника со сторонами 78, 54 и 33
Найти высоту треугольника со сторонами 117, 99 и 61
Найти высоту треугольника со сторонами 127, 119 и 11
Найти высоту треугольника со сторонами 135, 110 и 108
Найти высоту треугольника со сторонами 123, 104 и 35
Найти высоту треугольника со сторонами 142, 91 и 55
Найти высоту треугольника со сторонами 117, 99 и 61
Найти высоту треугольника со сторонами 127, 119 и 11
Найти высоту треугольника со сторонами 135, 110 и 108
Найти высоту треугольника со сторонами 123, 104 и 35
Найти высоту треугольника со сторонами 142, 91 и 55