Рассчитать высоту треугольника со сторонами 138, 133 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 133 + 33}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-138)(152-133)(152-33)}}{133}\normalsize = 32.984845}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-138)(152-133)(152-33)}}{138}\normalsize = 31.7897419}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-138)(152-133)(152-33)}}{33}\normalsize = 132.938921}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 133 и 33 равна 32.984845
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 133 и 33 равна 31.7897419
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 133 и 33 равна 132.938921
Ссылка на результат
?n1=138&n2=133&n3=33
Найти высоту треугольника со сторонами 148, 141 и 122
Найти высоту треугольника со сторонами 149, 115 и 95
Найти высоту треугольника со сторонами 137, 75 и 67
Найти высоту треугольника со сторонами 66, 51 и 32
Найти высоту треугольника со сторонами 145, 136 и 85
Найти высоту треугольника со сторонами 143, 100 и 72
Найти высоту треугольника со сторонами 149, 115 и 95
Найти высоту треугольника со сторонами 137, 75 и 67
Найти высоту треугольника со сторонами 66, 51 и 32
Найти высоту треугольника со сторонами 145, 136 и 85
Найти высоту треугольника со сторонами 143, 100 и 72