Рассчитать высоту треугольника со сторонами 138, 134 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 134 + 9}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-138)(140.5-134)(140.5-9)}}{134}\normalsize = 8.17810945}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-138)(140.5-134)(140.5-9)}}{138}\normalsize = 7.9410628}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-138)(140.5-134)(140.5-9)}}{9}\normalsize = 121.762963}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 134 и 9 равна 8.17810945
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 134 и 9 равна 7.9410628
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 134 и 9 равна 121.762963
Ссылка на результат
?n1=138&n2=134&n3=9
Найти высоту треугольника со сторонами 55, 53 и 49
Найти высоту треугольника со сторонами 132, 76 и 72
Найти высоту треугольника со сторонами 29, 26 и 11
Найти высоту треугольника со сторонами 94, 83 и 51
Найти высоту треугольника со сторонами 92, 88 и 21
Найти высоту треугольника со сторонами 129, 104 и 71
Найти высоту треугольника со сторонами 132, 76 и 72
Найти высоту треугольника со сторонами 29, 26 и 11
Найти высоту треугольника со сторонами 94, 83 и 51
Найти высоту треугольника со сторонами 92, 88 и 21
Найти высоту треугольника со сторонами 129, 104 и 71