Рассчитать высоту треугольника со сторонами 138, 136 и 115
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 136 + 115}{2}} \normalsize = 194.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{194.5(194.5-138)(194.5-136)(194.5-115)}}{136}\normalsize = 105.132408}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{194.5(194.5-138)(194.5-136)(194.5-115)}}{138}\normalsize = 103.60875}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{194.5(194.5-138)(194.5-136)(194.5-115)}}{115}\normalsize = 124.3305}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 136 и 115 равна 105.132408
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 136 и 115 равна 103.60875
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 136 и 115 равна 124.3305
Ссылка на результат
?n1=138&n2=136&n3=115
Найти высоту треугольника со сторонами 84, 71 и 18
Найти высоту треугольника со сторонами 111, 70 и 64
Найти высоту треугольника со сторонами 143, 87 и 69
Найти высоту треугольника со сторонами 99, 64 и 46
Найти высоту треугольника со сторонами 72, 58 и 18
Найти высоту треугольника со сторонами 119, 115 и 95
Найти высоту треугольника со сторонами 111, 70 и 64
Найти высоту треугольника со сторонами 143, 87 и 69
Найти высоту треугольника со сторонами 99, 64 и 46
Найти высоту треугольника со сторонами 72, 58 и 18
Найти высоту треугольника со сторонами 119, 115 и 95