Рассчитать высоту треугольника со сторонами 138, 136 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 136 + 8}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-138)(141-136)(141-8)}}{136}\normalsize = 7.79959574}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-138)(141-136)(141-8)}}{138}\normalsize = 7.68655812}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-138)(141-136)(141-8)}}{8}\normalsize = 132.593128}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 136 и 8 равна 7.79959574
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 136 и 8 равна 7.68655812
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 136 и 8 равна 132.593128
Ссылка на результат
?n1=138&n2=136&n3=8
Найти высоту треугольника со сторонами 108, 89 и 80
Найти высоту треугольника со сторонами 89, 69 и 44
Найти высоту треугольника со сторонами 64, 55 и 46
Найти высоту треугольника со сторонами 104, 92 и 35
Найти высоту треугольника со сторонами 108, 81 и 28
Найти высоту треугольника со сторонами 90, 52 и 43
Найти высоту треугольника со сторонами 89, 69 и 44
Найти высоту треугольника со сторонами 64, 55 и 46
Найти высоту треугольника со сторонами 104, 92 и 35
Найти высоту треугольника со сторонами 108, 81 и 28
Найти высоту треугольника со сторонами 90, 52 и 43