Рассчитать высоту треугольника со сторонами 138, 137 и 134
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 137 + 134}{2}} \normalsize = 204.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{204.5(204.5-138)(204.5-137)(204.5-134)}}{137}\normalsize = 117.439272}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{204.5(204.5-138)(204.5-137)(204.5-134)}}{138}\normalsize = 116.588263}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{204.5(204.5-138)(204.5-137)(204.5-134)}}{134}\normalsize = 120.06851}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 137 и 134 равна 117.439272
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 137 и 134 равна 116.588263
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 137 и 134 равна 120.06851
Ссылка на результат
?n1=138&n2=137&n3=134
Найти высоту треугольника со сторонами 99, 98 и 83
Найти высоту треугольника со сторонами 130, 124 и 24
Найти высоту треугольника со сторонами 122, 118 и 59
Найти высоту треугольника со сторонами 70, 50 и 47
Найти высоту треугольника со сторонами 106, 87 и 41
Найти высоту треугольника со сторонами 105, 105 и 3
Найти высоту треугольника со сторонами 130, 124 и 24
Найти высоту треугольника со сторонами 122, 118 и 59
Найти высоту треугольника со сторонами 70, 50 и 47
Найти высоту треугольника со сторонами 106, 87 и 41
Найти высоту треугольника со сторонами 105, 105 и 3