Рассчитать высоту треугольника со сторонами 138, 78 и 69

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 78 + 69}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-138)(142.5-78)(142.5-69)}}{78}\normalsize = 44.7066995}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-138)(142.5-78)(142.5-69)}}{138}\normalsize = 25.2690041}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-138)(142.5-78)(142.5-69)}}{69}\normalsize = 50.5380081}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 78 и 69 равна 44.7066995
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 78 и 69 равна 25.2690041
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 78 и 69 равна 50.5380081
Ссылка на результат
?n1=138&n2=78&n3=69