Рассчитать высоту треугольника со сторонами 138, 88 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 88 + 81}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-138)(153.5-88)(153.5-81)}}{88}\normalsize = 76.3936069}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-138)(153.5-88)(153.5-81)}}{138}\normalsize = 48.7147638}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-138)(153.5-88)(153.5-81)}}{81}\normalsize = 82.9955236}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 88 и 81 равна 76.3936069
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 88 и 81 равна 48.7147638
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 88 и 81 равна 82.9955236
Ссылка на результат
?n1=138&n2=88&n3=81
Найти высоту треугольника со сторонами 53, 41 и 18
Найти высоту треугольника со сторонами 139, 75 и 65
Найти высоту треугольника со сторонами 86, 65 и 53
Найти высоту треугольника со сторонами 136, 123 и 71
Найти высоту треугольника со сторонами 110, 107 и 91
Найти высоту треугольника со сторонами 128, 96 и 45
Найти высоту треугольника со сторонами 139, 75 и 65
Найти высоту треугольника со сторонами 86, 65 и 53
Найти высоту треугольника со сторонами 136, 123 и 71
Найти высоту треугольника со сторонами 110, 107 и 91
Найти высоту треугольника со сторонами 128, 96 и 45