Рассчитать высоту треугольника со сторонами 138, 91 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 91 + 84}{2}} \normalsize = 156.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156.5(156.5-138)(156.5-91)(156.5-84)}}{91}\normalsize = 81.493185}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156.5(156.5-138)(156.5-91)(156.5-84)}}{138}\normalsize = 53.7382597}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156.5(156.5-138)(156.5-91)(156.5-84)}}{84}\normalsize = 88.2842838}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 91 и 84 равна 81.493185
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 91 и 84 равна 53.7382597
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 91 и 84 равна 88.2842838
Ссылка на результат
?n1=138&n2=91&n3=84
Найти высоту треугольника со сторонами 139, 132 и 96
Найти высоту треугольника со сторонами 110, 109 и 6
Найти высоту треугольника со сторонами 149, 95 и 81
Найти высоту треугольника со сторонами 115, 77 и 62
Найти высоту треугольника со сторонами 120, 115 и 103
Найти высоту треугольника со сторонами 145, 143 и 77
Найти высоту треугольника со сторонами 110, 109 и 6
Найти высоту треугольника со сторонами 149, 95 и 81
Найти высоту треугольника со сторонами 115, 77 и 62
Найти высоту треугольника со сторонами 120, 115 и 103
Найти высоту треугольника со сторонами 145, 143 и 77