Рассчитать высоту треугольника со сторонами 138, 94 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 94 + 65}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-138)(148.5-94)(148.5-65)}}{94}\normalsize = 56.6763022}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-138)(148.5-94)(148.5-65)}}{138}\normalsize = 38.6055972}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-138)(148.5-94)(148.5-65)}}{65}\normalsize = 81.9626524}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 94 и 65 равна 56.6763022
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 94 и 65 равна 38.6055972
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 94 и 65 равна 81.9626524
Ссылка на результат
?n1=138&n2=94&n3=65
Найти высоту треугольника со сторонами 137, 114 и 99
Найти высоту треугольника со сторонами 148, 146 и 124
Найти высоту треугольника со сторонами 148, 102 и 99
Найти высоту треугольника со сторонами 63, 42 и 42
Найти высоту треугольника со сторонами 145, 78 и 74
Найти высоту треугольника со сторонами 91, 62 и 43
Найти высоту треугольника со сторонами 148, 146 и 124
Найти высоту треугольника со сторонами 148, 102 и 99
Найти высоту треугольника со сторонами 63, 42 и 42
Найти высоту треугольника со сторонами 145, 78 и 74
Найти высоту треугольника со сторонами 91, 62 и 43