Рассчитать высоту треугольника со сторонами 138, 97 и 69

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 97 + 69}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-138)(152-97)(152-69)}}{97}\normalsize = 64.2635132}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-138)(152-97)(152-69)}}{138}\normalsize = 45.1707303}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-138)(152-97)(152-69)}}{69}\normalsize = 90.3414606}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 97 и 69 равна 64.2635132
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 97 и 69 равна 45.1707303
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 97 и 69 равна 90.3414606
Ссылка на результат
?n1=138&n2=97&n3=69