Рассчитать высоту треугольника со сторонами 138, 98 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 98 + 69}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-98)(152.5-69)}}{98}\normalsize = 64.7387533}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-98)(152.5-69)}}{138}\normalsize = 45.9738973}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-98)(152.5-69)}}{69}\normalsize = 91.9477946}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 98 и 69 равна 64.7387533
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 98 и 69 равна 45.9738973
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 98 и 69 равна 91.9477946
Ссылка на результат
?n1=138&n2=98&n3=69
Найти высоту треугольника со сторонами 132, 84 и 63
Найти высоту треугольника со сторонами 142, 97 и 75
Найти высоту треугольника со сторонами 100, 83 и 66
Найти высоту треугольника со сторонами 118, 99 и 94
Найти высоту треугольника со сторонами 118, 110 и 51
Найти высоту треугольника со сторонами 138, 103 и 80
Найти высоту треугольника со сторонами 142, 97 и 75
Найти высоту треугольника со сторонами 100, 83 и 66
Найти высоту треугольника со сторонами 118, 99 и 94
Найти высоту треугольника со сторонами 118, 110 и 51
Найти высоту треугольника со сторонами 138, 103 и 80