Рассчитать высоту треугольника со сторонами 138, 98 и 97
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 98 + 97}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-138)(166.5-98)(166.5-97)}}{98}\normalsize = 96.9998711}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-138)(166.5-98)(166.5-97)}}{138}\normalsize = 68.8839664}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-138)(166.5-98)(166.5-97)}}{97}\normalsize = 97.9998697}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 98 и 97 равна 96.9998711
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 98 и 97 равна 68.8839664
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 98 и 97 равна 97.9998697
Ссылка на результат
?n1=138&n2=98&n3=97
Найти высоту треугольника со сторонами 120, 114 и 49
Найти высоту треугольника со сторонами 146, 142 и 87
Найти высоту треугольника со сторонами 86, 76 и 48
Найти высоту треугольника со сторонами 138, 122 и 30
Найти высоту треугольника со сторонами 147, 95 и 93
Найти высоту треугольника со сторонами 75, 73 и 51
Найти высоту треугольника со сторонами 146, 142 и 87
Найти высоту треугольника со сторонами 86, 76 и 48
Найти высоту треугольника со сторонами 138, 122 и 30
Найти высоту треугольника со сторонами 147, 95 и 93
Найти высоту треугольника со сторонами 75, 73 и 51